Z-score

The deviation of the value for an individual from the median value of the reference population, divided by the standard Deviation for the reference population
(Observed value) - (Median reference value)
Z- Score = \qquad

Standard deviation of reference population

A fixed Z score interval implies a fixed height or weight difference for children of a given age Advantage:- Allows mean and SD calculation for a group of Z score in population based applications

Percentile

It refers to a point on the scale, when series of data is arranged in an ascending order for a measurement. It is an ordinal scale and shows merely the order of rating on the scale.The rank position of an individual on a given reference distribution, stated in terms of what percentage of the group the individual equals or exceeds.

Eg. A child of a given age whose weight falls in the $10^{\text {th }}$ percentile weighs the same or more than 10% of the reference population of children of same age.

- Summary statistics not possible
- Towards the extremes of the reference distribution there is little change in percentile values, when there is infact substantial change in weight or height.
- If the distribution of reference values fallows a normal distribution, percentiles and Z scores are related through a mathematical transformation.
- Commonly used $-3,-2$ and -1 Z scores are respectively the $0.13^{\text {th }}, 2.28^{\text {th }}$ and $15.8^{\text {th }}$ percentiles and the $1^{\text {st }}, 3^{\text {rd }}$ and $10^{\text {th }}$ percentiles correspond to, respectively, the $-2.33,-$ 1.88 , and -1.29 Z scores.

